
Iguana – Applications

1 Introduction

1.1 What are applications?

Applications are the types of content that are supported by Iguana. Typical examples of
applications are Rich Text Items, RSS feeds, animations and word clouds. The CMS allows
you to create and manage instances of each of these application types.

At the front-end, applications are displayed as widgets. The applications can be included on
multiple pages, i.e. the content is reusable and can be “shared” between pages and profiles.

1.2 Application types overview

Iguana supports the following application types that can be managed via the CMS menu
section “Content – applications”.

 Rich Text Items (RTI)

 Animations

 RSS

 Search profiles

 Direct search & search filters

 Word cloud

 Logon

 Submenu

 Selfcheck loans/returns

These applications are all described in detail in this part of the documentation, with the
exception of Search profiles and Direct search & search filters, which are described in the
document on Search.

The following applications are also available, but are not (or indirectly) accessed via the
“Content – applications” section of the CMS menu. These are:

 Search boxes – This application is defined as a Rich Text Item and is described in the
chapter “Rich Text Items” in this document.

 iFrames – This application is defined as a Rich Text Item and is described in the
chapter “iFrames” in this document.

 Forms (webforms) – This application is defined as a Rich Text Item and is described in
the chapter “Forms (webforms)” in this document.

 Mashups – Mashups typically run “in an iFrame”, - and as such they fall in the iFrame
applications category (e.g. Google Maps, Twitter feeds, and others). See the document
on Mashups for more information on mashups in general and more specifically on
mashups that do not fall in the “iFrame” category (e.g. cover images).

 Published content containers – This application is described in the document
“Published content”.

 Published content items – This application is described in the document My Profile –
This application inherits most of its settings from the V-smart WebOpac Preferences. In
the Iguana CMS there are just a few properties that can be modified. These can be
found under General & Tools > System parameters. My Profile is described in the
document “My Profile”.

For each of these applications (with the exception of My profile), multiple instances can be
created. The CMS is used to create and manage these instances, i.e. to define a set of
properties, which are grouped in a number of property categories. The properties differ
between the application types, but a number of property groups are typically shared between
the types.

The property groups that are usually shared between the application types are:

DocHelp%5eIguana%5e09_Search%5eeng.htm
DocHelp%5eIguana%5e11_Mashups%5eeng.htm
DocHelp%5eIguana%5e06_PublishedContent%5eeng.htm
DocHelp%5eIguana%5e10_MyProfile%5eeng.htm
DocHelp%5eIguana%5e10_MyProfile%5eeng.htm

Of these, three property groups always have the same properties: View permissions and
restrictions, In use and Previous versions.

These three property groups are described apart from the application descriptions.

1.3 Application instance versions & life-time cycle

During its “life-time” an application instance can have multiple versions. These versions are
either:

 Draft : a draft version

 Active : the current version

 Previous : one to ten previous versions

 Archive : when an application instance is deleted, it is not actually deleted, but
archived.

The Previous versions section of the application properties display the previous versions as
hyperlinks. To reinstate a previous version as the “current” (active) version: [1] click on the
previous version (hyperlink) that you want to reinstate, and [2] click on the Restore this
version button.

To Archive a version: click on the Delete button. This Delete button is present on both the
application instance overview page and on the application instance detail page. This action
will only archive the current (active) version; all previous versions will be permanently
removed.

To remove an archived version, you can open the archived version and delete it. This will
permanently remove the instance.

To save your work as a Draft version, click on the Save as draft button. This button is only
available on the application instance detail page.

(If you save an application instance as a draft version, you can use this draft version to
edit/revise the application instance‟s contents without directly affecting the production version
of the application instance. When this draft application instance is then promoted to
production status using the Validate for production button, the existing production version
will be archived and the draft version will become the production version.)

2 Managing applications

Select the option „Content - applications‟ from the left navigation pane on the Iguana CMS
home page, the menu is expanded:

2.1 Application instances overview

If an application type is selected from the navigation menu, the list of existing instances of the
chosen type is displayed. This display uses a generic element in the Iguana CMS, - the
overview page of instances of a specific data type.

The application instances overview page is described in the chapter Instances overview page
of the "Management common workflow" document.

DocHelp%5eIguana%5e02_ManagementCommonWorkflow%5eeng.htm

2.2 Options on the application instances page

The options on the application instances overview page are described in the chapter Options
on the instances overview page of the "Management common workflow" document.

2.3 How to create a new application instance

To create a new application instance, act as follows.

1. In the left pane, click on the application type of which you want to create a new
instance. The application types can be found under the header “Content –
applications”.

2. On the overview screen of existing instances, click on the New button.

3. You will now be offered to enter the properties for the application type that you
selected. The set of properties that can be defined depends on the chosen application
type (e.g. RSS channels have other properties than animations, etc.).

4. Click on the Save button to save your work.

All steps in this process are described in detail in other sections of the documentation.

2.4 Application instance details page

If you select an existing application instance on the overview page, or if you start creating a
new instance, the instance details page will be displayed.

This page displays all the property groups that are valid for the selected application type.

The following options are available:

 Save : to save the application instance

 Save as draft : to save the application instance as a draft version (This draft version
can be used to edit/revise the application instance‟s contents without directly affecting
the production version of the application instance. When this draft application instance
is then promoted to production status using the „Validate for production‟ button, the
existing production version will be archived and the draft version will become the
production version.)

DocHelp%5eIguana%5e02_ManagementCommonWorkflow%5eeng.htm

 Copy : to copy an existing instance to a new one

 Cancel : to return to the overview page of the application instances

 Show all : to expand (the display of) all property groups

 Hide all : to hide (collapse) all the property groups

 Changing application instance properties (this is, as opposed to the other options, not a
button on the screen; the properties are displayed in the page and can be modified
directly).

Each of these options is described in detail in the following section.

2.5 Options on the application instance details page

The following options are available on an application instance details page.

2.5.1 Save

To save the settings (properties) of an application instance: click on the Save button. This will
have an immediate effect on the production version of the application instance. If you only
want to save your changes without any changes to the production version, you can use the
Save as draft button.

2.5.2 Save as draft

If you want to save modified settings (properties) of an application instance as a draft version,
click on the Save as draft button.

This will save a draft version of the instance, i.e. the modified settings will not have any effect
on the production version of the application instance.

2.5.3 Cancel

If you click on the Cancel button, you will return to the application instances overview. If there
are any unsaved changes, a popup message (“There are unsaved changes – proceed? (if
you proceed your changes will be lost)”.) will be displayed, and you will have to confirm if you
want to proceed.

If you proceed (click on Yes) all unsaved changes will be lost, if you click on No you will
remain on the application instance details page.

2.5.4 Copy

In order to create a new instance based on an existing definition, you must first select the
application instance you want to copy from. If you forget this, the system will display a
warning that you must select a line from the overview screen with application instances before
you can use the Copy option.

If you click on the Copy button, you will be asked to enter the id of the new application
instance. Enter a valid application instance id and click on the OK button to store the new
application instance.

After the copy, the application will switch to the display of the new application instance.

Please note

The copy option will copy the property values of the original application instance.

So if you want to create a new version, you must first use the copy option and give it a new
name. You can then make changes to the copy, leaving the original version (the one you
copied from) intact.

Do not make changes to the original version if you want to include those changes in the
copied version, because there is no "Save as" option (by design) to then save it under a
different name. If you start by making changes to the original and then realize you should
have made a copy first, your only option is to cancel without saving changes.

2.5.5 Show / hide property groups

You can show or hide individual property groups by clicking on the property group‟s display
name. This will either show or hide the properties in the group.

You can hide all properties by clicking on the Hide all button.

You can display all properties by clicking on the Show all button.

When you click on the Save button, Iguana will automatically “remember” the last display
settings for the application type (e.g. an animation, a RSS feed or a Rich Text Item), and
reuse these if you access an application instance of the same type.

2.5.6 Modify properties

You can modify properties (or not) depending on the authorisation settings for the role that is
(or roles that are) attached to your user account (read only – change – delete).

The application properties are described in detail in the following sections.

3 Generic application properties

The application details page shows all properties that are linked to the application type that
you selected.

There are three property groups that are shared between most, if not all, data elements
(pages, applications, etc.) and that always contain identical properties. These are:

 View permissions and restrictions

 In use

 Previous versions

These property groups are described in the chapter Generic instance properties of the
"Management common workflow" document.

4 Properties and languages

If you are managing multi-language sites, you will want to enter some properties in multiple
languages. This is typically the case for all texts and content that needs to be displayed in a
specific language.

This topic is described in the chapter Properties and languages of the "Management common
workflow" document.

5 Animations

Select the option „Content - applications‟ from the left navigation pane and then the option
Animations, the list of existing definitions will be displayed.

5.1 What are animations?

DocHelp%5eIguana%5e02_ManagementCommonWorkflow%5eeng.htm
DocHelp%5eIguana%5e02_ManagementCommonWorkflow%5eeng.htm
DocHelp%5eIguana%5e02_ManagementCommonWorkflow%5eeng.htm

Animations are, in this context, animated films created using Flash or JavaScript. Typically,
the animations contain images, book covers and similar. Supported animations types are:

 rotating pictures

 rivers

 carrousels

 rolodexes

In this context, videos (MPEG or other) or animated GIF‟s are not animations.

River animation examples

A carrousel animation example

A rotating picture animation example (picture 1 – picture 1 fades out – picture 2 fades in –
picture 2)

A rolodex animation example

5.2 Overview of property groups and optionsAnimations have

the following property groups:

 Basic settings

 Advanced settings

 Preview

 View permissions and restrictions (*)

 In use by (*)

 Previous versions (*)

The property groups marked with (*) are described in the chapter Generic instance properties
of the "Management common workflow" document.

The available options are the standard options (Save, Save as draft, Copy, Cancel, Show all
and Hide all). These are described in the chapter Options on the instances overview page of
the "Management common workflow" document.

5.3 Basic settings

DocHelp%5eIguana%5e02_ManagementCommonWorkflow%5eeng.htm
DocHelp%5eIguana%5e02_ManagementCommonWorkflow%5eeng.htm

The basic settings of animations are:

Please note that not all these properties are always available. Some of these
properties are related to one or more specific animation types. Properties are only
displayed if they are relevant to the “active” animation type.

The basic settings define the content of the animation and also encompass the most
important properties of the animation‟s look & feel. (More specific properties related to the
look & feel can be found in the Advanced settings section.)

Define the basic settings as follows:

Tree storage: The tree storage allows you to organize your content in a hierarchic folder
structure. You can define a maximum of five levels in the storage tree.

The tree storage allows you to order content in a hierarchical tree structure with a
maximum of five levels. If you want to add existing content to a Page e.g., you can
select the content from a treeview. The tree storage allows you to organize content
that is ordered via the tree storage.

The tree storage is optional. Content that is not placed in the tree storage is added at
the top level of the treeview.

In use: You can set an application to Not in use. This implies that you cannot link the
application to pages. Setting an application to Not in use does NOT imply that it is removed
from views (pages).

Name: This is the unique name of the application instance.

Type: Select the animation‟s content type from the list. Supported content types are:

 New items : items that are new in the bibliographic metadata / holdings database of the
back-end ILS; when you select this type you can then select a list from the ID field

 Savelist : a list of (manually or otherwise) selected items; when you select this type you
can then select a user from the ID field (and subsequently a savelist of that user)

 Recently returned items : items that were recently returned in the back-end ILS

 Recently viewed items : items that were recently viewed in Iguana

 Picture list : a list of images; when you select this type you can select a Presentation
(there will be no ID, Provider or Scope)

 Hot list : items that are included in a so-called “hotlist” in V-insight (you will only see this
type when V-insight is installed on your system)

 XML file: a specific file type; when you select this type you can select a Presentation
(there will be no ID, Provider or Scope)

 High rating: a list of items that have been given a high rating in Iguana

 Recently reviewed: A dynamic display of book cover images of items recently reviewed
in Iguana – requires license with provider of book covers

 Specific mood: a list of items that have been assigned a specific mood; when you
select this type you can then select a mood from the ID field (Moods are defined under
General & Tools)

ID: This is the ID that defines the content of the animation; the format of this ID and the
workflow to define it, depend on the content type; the ID‟s are:

 New items : an interest topic

 Savelist : a savelist of a specific user (you will first have to select the user from a
dropdown list, and then afterwards the savelist)

 Recently returned items : ID is always “*”

 Recently viewed items : ID is always “*”

 Picture list : a list of images (select two or more images from the media server); use the
Search button to select the images; this will open the Media Manager, and you can
now select the image that you want to add)

 Hot list : a hot list

 XML file : an XML file that contains the content that should be loaded

Provider: For the time being, the Provider is always “Vubis”.

Scope: You can indicate for which “scope” the content needs to be created. This is either
system-wide (expressed as “*”), or “Active location profile” or an institution/location
combination. If you select an institution/location combination, the content will be restricted to
items of the selected institution/location. If you select “Active location profile” the active
location profile (and not a hard-coded one) will be applied.

The Scope property is only applied to animations of the “New items” type.

When the borrower is logged in, …: When this option is checked, only the items belonging
to the borrower‟s home institution will be displayed in the animation.
This works best if the previous parameter is set to Scope at system level. Scope differences
may result in nothing being displayed

Presentation: Select the presentation type from the list of possible values. The supported
presentation types are:

 River bounce : a "river" of images that automatically move from right to left ; when the
end is reached, the direction changes from left to right, - and so on

 Carrousel : a carrousel of images that do not automatically move; the user can however
navigate through the list of images via mouse clicks on the images that are not in the
centre position

 Rolodex : a list of "standing" images that automatically "fall", so that the next image
takes centre position

 Rotating gallery : a list of images that fade away, after which the next image from the
list fades in

Additional configuration: Please contact Infor if you think additional configuration is
required.

Picture list: If the content type is Picture list, you can select two or more pictures using the
Search button ; please note that when you want to support the functionality that a user can
click on an image to launch a URL (e.g. to access another page on the site), that you should
use the XML file solution instead of the Picture list; the latter does not support clickable
images

XML file (URL): the file name that contains the content for the animation, expressed as an
absolute URL (e.g. http://www.somesite.com/iguana/Isthisthewaytoamarillo.xml); please see
section 5.6 (Animation content stored in an XML file) for more information about the structure
of the XML file

Title (English): This is the main title that is displayed as part of the animation.

Subtitle (English): This is the subtitle that is displayed as part of the animation. It is
displayed in a smaller font than the main title.

Keywords (English): You can define keywords (tags) that are relevant for this application.
These keywords will be inserted into the HTML page as meta tag keywords, which can
improve your ranking in search engines (SEO).

Notes (English): You can add notes to the application instance. These notes are for internal
use only; they are not displayed in the actual animation.

5.4 Advanced settingsThe advanced settings of animations are:

http://www.somesite.com/iguana/Isthisthewaytoamarillo.xml

Define these properties as follows:

Created by: This is the person who created the animation instance and the date on which it
was created. You cannot modify these properties.

Modified by: This is the person who last edited the animation instance and the date on which
it was modified. You cannot modify these properties.

Unique id: This unique id of the animation is used for internal purposes only. You cannot
modify it.

Show personal interests: If you set this property to Yes, the animation instance will give
priority to new items for the interest topics that are in the user‟s interest profile. An Iguana
user can create his own interest profile, consisting of one or more interest topics. New items
for these interest topics will be included in the content of the animation and will get priority
over “non-personal” new items.

This property is only relevant for animations that show content of the content type
“New items” (i.e. items that are new in the collection).

Touch enabled: Set this property to Yes if support for touch screens is required.

Cover presence check: Set this property to Yes if the application should check whether a
cover if potentially available. Please note that this does NOT guarantee that a cover actually
IS available; it only checks -at the server-side- if the necessary metadata are present in the
metadata record to support the retrieval of a cover from a content provider. A typical example
of the Cover present check is that the metadata record will be checked for the presence of an
ISBN.

Please also note the following. Once the server-side application has concluded that it
can generate a link to the cover information, it will store this information and not again
perform the check. This is done for performance reasons. If the cover check failed the
last time, it will be executed again (the assumption is that in the mean time additional
metadata information may be available, enabling the application to generate the
correct link this time).

Hide dummy cover: In case there is no cover to be found, the system can display a default
cover image. Set this property to Yes if you do not want the system to display a default cover
image. In that case no image will be displayed at all.

Number of days to go back: This is how far the application should go back in time to check
for new items (e.g. 7 is go back one week). [This property is only relevant for new items.]

Note

When you import entries for animations via a savelist, the system does apply the „backdate‟
parameter. To be safe, it is best to set this parameter to cover the period dating back to your
original Vubis installation to be sure of getting all the items from the savelist displayed in
Iguana's animations.

Number of embargo days: This is the number of days counting back from the present day
that should NOT be included in the animation (e.g. 1 means: do not include yesterday‟s new
items; 3 means: do not include the new items of the last three days, etc.). [This property is
only relevant for new items.]

Maximum number of records: The maximum number of records that should be included in
the animation. At server-side this number may be overruled by a maximum value. Please also
note that, depending on the animation type, you should not set this value at a level that is too
low. For rivers, we advise to set the minimum number of records to at least 1.5 times the
number of covers that are visible in the animation at any single point (e.g. if six covers are
visible, then set this value to at least 9, which is the absolute minimum).

Height: The height of the animation, expressed in pixels.

Width: The width of the animation, expressed in pixels.

Background image: The background image of the animation. You can use the Search
button to open the Media manager and select an image that is present on the site‟s image
server.

Please note

The content of animations is not updated each time an application is invoked.
Typically, the system is configured to run an update of animations content once each
day. Usually this is done in the early hours of the day.

Recently returned items and Last viewed items, however, are update on-the-fly.

5.5 PreviewThe Preview section displays the animation and reflects the current

settings of the animation instance properties.

If you click on Save and then on Refresh, the animation will be loaded again to reflect any
changes to the property settings.

5.6 Animation content stored in an XML file

As explained in the section on Basic settings, animations can also retrieve their content from
an XML file. This allows you to include basically any content. The XML file is accessed
directly and is expressed in the CMS as an absolute URL (e.g.
http://www.somesite.com/iguana/Isthisthewaytoamarillo.xml). This section contains
information on the structure of the XML file. You can create the file by using any editor that is
able to create or edit XML.

The XML file has a simple structure, that allows you to include a list of one or more items (see
below for an example). For each of the items you can include three tags:

 image : the absolute URL of the image that needs to be displayed

 URL : the URL that needs to be accessed if the user clicks on the image

 title : the „title‟ of the image; this „title‟ is shown as the ALT or TITLE attribute of the
image.

An example of an animation content XML file:

http://www.somesite.com/iguana/Isthisthewaytoamarillo.xml

6 Rich Text Items (RTI’s)

Select the option „Content - applications‟ from the left navigation pane and then the option
Rich Text Items, the list of existing definitions will be displayed.

6.1 What are Rich Text Items?

Rich Text Items are “static” texts created with a so-called Rich Text Editor. A Rich Text Editor
is a WYSIWYG editor (“what you see is what you get”) that allows you to create and manage
“web-friendly” content (primarily formatted text, which may however also include images,
videos and other types of multimedia).

See section 6.6 (Rich Text Editor) for more information.

Rich Text Items have a maximum length of 32.000 characters. This maximum length
includes formatting characters.

6.2 Overview of property groups and optionsRich Text Items

have the following property groups:

 Basic settings

 Content

 Summary

 Advanced settings

 View permissions and restrictions (*)

 In use by (*)

 Previous versions (*)

The property groups marked with (*) are described in section 3 “Generic application
properties”.

The available options are the standard options (Save, Save as draft, Copy, Cancel, Show all
and Hide all). These are described in section 2.5 “Options on the application instance details
page”.

6.3 Basic settings

The basic settings of Rich Text Items are:

Define the basic settings as follows:

Tree storage: The tree storage allows you to organize your content in a hierarchic folder
structure. You can define a maximum of five levels in the storage tree.

In use: You can set an application instance to Not in use. This implies that you cannot link the
application to pages. Setting an application instance to Not in use does NOT imply that it is
removed from views (pages).

Title (English): This is the title that is displayed in the header of the Rich Text Item.

A subtitle can be entered by adding '^^^' and the subtitle to the title of a RichTextItem. So if
the title is this:
'title of widget'
only the main title will be shown, inside a span with class 'maintitle'.

When it is:
'title of widget^^^subtitle of widget'
both titles are shown, 'title of widget' inside a span with class 'maintitle' and 'subtitle of widget'
inside a span with class 'subtitle'.

CSS can then be used to display the subtitle differently from the main title.

Keywords (English): You can define keywords (tags) that are relevant for this application.
These keywords will be inserted into the HTML page as meta tag keywords, which can
improve your ranking in search engines (SEO).

Notes (English): You can add notes to the application instance. These notes are for internal
use only; they are not displayed in the actual application.

6.4 Advanced settingsThe advanced settings of Rich Text Items are:

Created by: This is the person who created the RTI instance and the date on which it was
created. You cannot modify these properties.

Modified by: This is the person who last edited the RTI instance and the date on which it was
modified. You cannot modify these properties.

Unique id: This unique id of the RTI is used for internal purposes only. You cannot modify it.

When to create RRS feed: and RSS channel: these options are not yet in use.

6.5 Content and Summary

This is the actual (RTI) content that is displayed. The content may include text, images,
videos and other types of content. Typically, this content is “static”, i.e. it does not change
automatically: it only changes when it is edited via the RTE (Rich Text Editor).

The content can be defined in two property groups, one called “Content” and one called
“Summary”. “Content” is used to define the full content, while “Summary” can optionally be
used to define a shorter version of the content.

If Summary content is defined, it will be displayed in the Iguana front-end, followed by a link
“Click here for more information”. If the link is clicked, the full content will be displayed.

If no Summary content is defined, the full content is displayed immediately.

The following screen shot shows an RTI summary. Please note the “read more” link at the
bottom of the “How do I…?: Reserve an item” RTI widget at the left of the page.

If you click on the “read more” link, the full content is displayed, which looks as follows:

At the end of the content is a “show less” link that can be used to “hide” the full content again
and to “return” to the summary.

6.6 Rich Text Editor

To create and edit Rich Text Items (RTI‟s), Iguana offers an integrated Rich Text Editor.
Iguana uses the CKEditor.

“CKEditor is a text editor to be used inside web pages. It's a WYSIWYG editor, which means
that the text being edited on it looks as similar as possible to the results users have when
publishing it. It brings to the web common editing features found on desktop editing
applications like Microsoft Word and OpenOffice.” (from http://www.ckeditor.com).

The user documentation of CKEditor (English only) can be found at
http://docs.cksource.com/CKEditor_3.x/Users_Guide. For your convenience and to illustrate
the capabilities of the RTE, we include in this documentation a section from the Quick
Reference guide (http://docs.cksource.com/CKEditor_3.x/Users_Guide/Quick_Reference)
from the user documentation.

Working with a Document

Toolbar Button Description

 View or edit the source code of the document (for advanced users).

Save the contents of CKEditor and submit its data to the server, when

CKEditor is placed inside an HTML form.

 Clear the editing area and create a new page.

Show a preview of the document in the shape that will be displayed

eventually

 Select a layout template.

 Cut the selected text fragment to the clipboard.

 Copy the selected text fragment to the clipboard.

http://docs.cksource.com/CKEditor_3.x/Users_Guide
http://docs.cksource.com/CKEditor_3.x/Users_Guide/Quick_Reference

 Paste content copied to the clipboard along with formatting.

 Paste content copied to the clipboard without formatting.

Paste content copied from Microsoft Word or similar applications along

with formatting.

 Print document contents.

 Insert a page break. This only impacts the printed version.

Check spelling of the document text or turn on the Spell Check As You

Type (SCAYT) feature.

 Undo or redo the most recent action performed.

 Find a word or phrase in the document.

 Find and replace a word or phrase in the document.

 Select all contents of the document.

 Remove the formatting of the selected text.

 Maximize the editor in the browser window.

 Highlight all block-level elements in the document.

 Show information about CKEditor.

To set the language for (part of the) text. Primarily meant for multi-lingual

texts to support for instance screen readers and braille displays,

Contact Info for defining languages available in the dropdown list

(because this can not be set interactively).

Text Styling

Toolbar Button Description

 Apply bold, italic, underline or strike-through formatting to the text.

 Apply superscript or subscript formatting to the text.

Apply pre-defined combinations of various formatting options to block and

inline elements.

 Apply pre-defined block-level combinations of various formatting options.

 Change the typeface of the text.

 Change the font size of the text.

 Change the color of the text.

 Change the background color of the text.

Text Layout

Toolbar Button Description

 Increase or decrease text indentation.

 Format a block of text as indented quotation.

 Create a new div element in document source.

 Set text alignment (left, centred, right or justified).

Set text direction as from left to right (default value for most Western

languages) or from right to left (languages like Arabic, Persian, Hebrew).

 Insert a divider line (horizontal rule) into the document.

Rich Text

Toolbar Button Description

 Create a numbered or bulleted list.

Create or remove a hyperlink in the text. These features may also be

used to manage file uploads and links to files on the web server.

 Insert a link anchor to the text.

 Insert an image into the document.

 Insert an Adobe Flash object into the document.

 Create a table with the defined number of columns and rows.

 Insert an emoticon image (smiley or icon).

 Insert a special character or symbol.

 Insert an inline frame (iframe).

 Insert navigation menu (Iguana specific)

 Insert search box (Iguana specific)

Form Elements

Toolbar Button Description

 Insert a new form into the document.

 Insert a checkbox into the document form.

 Insert a radio button into the document form.

 Insert a text field into the document form.

 Insert a multi-line text area into the document form.

 Insert a selection field into the document form.

 Insert a button into the document form.

 Insert an image button into the document form.

 Insert a hidden field into the document form.

Iguana specific features

Although Iguana uses CKEditor for creating and editing Rich Text Items (RTI‟s), it adds a
number of specific features to it. These are:

 the Add hyperlink form is extended with a “Hyperlink requires logon” feature; if you
check this box (i.e. set the value to Yes), the target destination of the hyperlink will only
be accessible to users who are logged on; if a user who is not logged on, click on such
a hyperlink, the logon popup will automatically be invoked

 an additional editor feature “Insert navigation menu” is available; this is described in the
chapter Page header in the document on Pages & Profiles

 an additional editor feature “Insert search box” is available; this is described in the
chapter “RTI” search boxes: client-side configuration of the document on Search.

6.7 Images

When you include images in a Rich Text Item, please be aware of the fact that the larger an
image is, the longer it will take for the page (that includes the Rich Text Item) to load. The
Rich Text Editor allows you to specify the width and height of an image as you include it in the
Rich Text Item, but this is an option that you should not use, - or only very rarely. This option
basically tells the browser at which size the image should be displayed and does not actually
resize it. Or in other words: the full image is still downloaded by the browser, which may take
a long time for large images.

Instead of specifying a width and height you should resize the image to a smaller size with
software such as PhotoShop, Paint Shop Pro, GIMP or similar applications, and insert the
resized image in the Rich Text Item.

DocHelp%5eIguana%5e03_Pages_and_Profiles%5eeng.htm
DocHelp%5eIguana%5e09_Search%5eeng.htm

Furthermore, you should not use just any image format. For inclusion in a web page, JPG,
PNG and GIF are the most advised image formats.

7 RSS channels

Select the option „Content - applications‟ from the left navigation pane and then the option
RSS, the list of existing definitions will be displayed.

7.1 What are RSS channels?

RSS channels are web feeds that are used to publish frequently updated works such as blog
entries, news headlines and others (see http://en.wikipedia.org/wiki/RSS for more
information).

Iguana contains an RSS reader. This RSS reader accesses the RSS channel and displays
the feeds that are returned by the RSS channel.

The RSS reader supports multiple RSS “formats”:

 RSS 0.90

 RSS 0.91 (Netscape)

 RSS 0.91 (Userland)

 RSS 0.92

 RSS 1.0

 RSS 2.0

 Atom 0.3

 Atom 1.0

 [and others]

Please note

http://en.wikipedia.org/wiki/RSS

The RSS channel application is not about how information from Iguana or the server-
side ILS is published as RSS feeds, but how Iguana can incorporate RSS feeds from
“external” RSS channels in its front-end.

Information on Iguana RSS channels can be found here:

 the chapter Interests RSS feeds in the document on Interests

 the chapter Published content RSS feeds in the document on Published content

7.2 Overview of property groups and optionsRSS channels

have the following property groups:

 Basic settings

 Preview

 View permissions and restrictions (*)

 In use by (*)

 Previous versions (*)

The property groups marked with (*) are described in section 3 “Generic application
properties”.

The available options are the standard options (Save, Save as draft, Copy, Cancel, Show all
and Hide all). These are described in section 2.5 “Options on the application instance details
page”.

7.3 Basic settings

The basic settings of RSS channels are:

DocHelp%5eIguana%5e08_Interests%5eeng.htm
DocHelp%5eIguana%5e06_PublishedContent%5eeng.htm

Define the basic settings as follows:

URL of RSS channel: This is the URL of the RSS channel (e.g.
http://www.nu.nl/feeds/rss/algemeen.rss).

Show summary: An RSS feed typically consists of (amongst others) a title and a summary. If
you set this property to Yes, the display will automatically show the summary under the title of
the feed. If you set this property to No, the display will only show the title of the feed and you
can view the summary by clicking on the expand icon before the title.

Number of items: This is the number of RSS feeds that need to be included in the display of
the RSS channel.

Tree storage: The tree storage allows you to organize your content in a hierarchic folder
structure. You can define a maximum of five levels in the storage tree.

In use: You can set an application instance to Not in use. This implies that you cannot link the
application to pages. Setting an application instance to Not in use does NOT imply that it is
removed from views (pages).

Title (English): This is the title that is displayed in the header of the widget that displays the
RSS feeds.

Keywords (English): You can define keywords (tags) that are relevant for this application.
These keywords will be inserted into the HTML page as meta tag keywords, which can
improve your ranking in search engines (SEO).

Notes (English): You can add notes to the application instance. These notes are for internal
use only; they are not displayed in the actual application.

7.4 PreviewThe Preview section accesses the RSS channel and displays the returned

information. The display will reflect the current settings of the RSS channel instance
properties.

If you click on Refresh, the RSS channel will be accessed again and the display will reflect
any changes to the property settings.

8 Word clouds

Select the option „Content - applications‟ from the left navigation pane and then the option
Word clouds, the list of existing definitions will be displayed.

8.1 What are word clouds?

A word cloud (also called tag cloud) is a visual representation of textual data (“tags”) in a
cloud-like display. These tags can be one or more words. The tags are hyperlinks and their
size indicates their relative importance (within the set of tags in the cloud).

In Iguana word clouds can contain three types of tags:

 hyperlinks to pages in the current Iguana site

 hyperlinks to search results : a search action is executed

 hyperlinks to “external” pages (pages outside of the current Iguana site).

8.2 Overview of property groups and optionsWord clouds

have the following property groups:

 Basic settings

 Advanced settings

 Preview

 Items

 View permissions and restrictions (*)

 In use by (*)

The property groups marked with (*) are described in section 3 “Generic application
properties”.

The available options are the standard options (Save, Save as draft, Copy, Cancel, Show all
and Hide all). These are described in section 2.5 “Options on the application instance details
page”.

8.3 Basic settings

The basic settings of word clouds are:

Define the basic settings as follows:

Tree storage: The tree storage allows you to organize your content in a hierarchic folder
structure. You can define a maximum of five levels in the storage tree.

In use: You can set an application instance to Not in use. This implies that you cannot link the
application to pages. Setting an application instance to Not in use does NOT imply that it is
removed from views (pages).

Title (English): This is the title that is displayed in the header of the widget that displays the
word cloud.

Keywords (English): You can define keywords (tags) that are relevant for this application.
These keywords will be inserted into the HTML page as meta tag keywords, which can
improve your ranking in search engines (SEO).

Notes (English): You can add notes to the application instance. These notes are for internal
use only; they are not displayed in the actual application.

8.4 Advanced settingsThe advanced settings of word clouds are:

Created by: This is the person who created the word cloud instance and the date on which it
was created. You cannot modify these properties.

Modified by: This is the person who last edited the word cloud instance and the date on
which it was modified. You cannot modify these properties.

Unique id: This unique id of the word cloud is used for internal purposes only. You cannot
modify it.

8.5 PreviewThe Preview section displays the word cloud. The display will reflect the

current settings of the word cloud instance properties.

If you click on Refresh, the word cloud will be displayed again and the display will reflect any
changes to the property settings.

Please note

Please note that the Preview is an approximate view of how the word cloud will be
displayed in the actual front-end of the site. Due to multiple reasons, such as width
and height of the word cloud container, the actual display may vary significantly.

A word cloud preview in the CMS

A word cloud in the Iguana front-end.

8.6 Items

Items are the tags that are included in the word cloud. There are no technical limits on the
number of items that you include in a cloud (you can include hundreds of tags if you want to).

8.6.1 Items overview

The items are displayed in list format. The following options are available for each item in the
list: you can click on the item Title (hyperlink) to access and edit the details of the item.

You can click on the Delete icon at the end of each line to delete an item from the list.

The New button at the top of the list can be used to add an item to the word cloud.

8.6.2 Item properties

Word cloud items have the following properties:

Define these properties as follows:

Title (language): The display “title” of the item, i.e. the text that is actually displayed in the
word cloud. This “title” is defined per language.

Type: The Type property determines, together with the Term property, what happens if a user
clicks on an item in the cloud. The supported types are:

 link : hyperlinks to pages in the current Iguana site

 search : a search action is executed

 open : hyperlinks to “external” pages (pages outside of the current Iguana site).

Ranking: Each item is ranked from 1 to 10. 1 is the highest ranking; 10 is the lowest ranking.
The higher the ranking, the bigger the display of the item in the word cloud. Please note
however that the actual display (colour, size, etc.) of the item depend on the settings in the
CSS definitions (and as such -theoretically- does not need to correspond to the ranking).

Term: The “term” is the property that, together with the value of the Type property determines
what happens if you click on a tag in the cloud. Depending on the value of the Type property,
term is:

 link : hyperlinks to pages in the current Iguana site, starting with the www.main.cls
prefix (e.g. “www.main.cls?sUrl=newacq”)

 search : the search term [please note that the search settings that are used are those
that Iguana uses for its default searching; typically this is a keyword search in the all
words index without any restrictions] (e.g. “harry potter”)

 open : the full URL of the page that needs to be opened starting with the http:// prefix
(e.g. “http://www.youtube.com”)

Start: The start date on which the item needs to be included in the cloud. If you leave this
value empty, the item will be included immediately after you save the word cloud instance
settings. If a start date is defined, the item will not be included in the word cloud until the start
date is reached. This property can be used to activate items in the cloud on a specific date.
[See also the End and Yearly properties.]

End: The end date until which the item is included in the cloud. After this date, the item will no
longer be included in the word cloud. If you leave this value empty, there is no end date. [See
also the Start and Yearly properties.]

Yearly: If you set this property to Yes, the Start and End date will be applied each year, i.e.
the start and end dates define a period that is applied each calendar year. This can be useful
to include in a cloud items that are only relevant for specific periods, e.g. each year you want
the “Christmas” tag to appear from December 1 until December 31.

When you select an item from the list, the properties are displayed in a popup pane. You can
edit the properties. Click OK to save the new settings; click Cancel to return to the item
overview without saving the changes.

9 Logon

Select the option „Content - applications‟ from the left navigation pane and then the option
Logon, the list of existing definitions will be displayed.

9.1 What is Logon?

Logon is the application that allows a user to logon. The user identifies himself using his
credentials.

The main settings of Logon are determined by the back-end ILS settings.

http://www.main.cls/

The Logon application itself gives you the ability to define Texts that precede and follow the
actual controls that facilitate the logon (e.g. Username / Password).

9.2 Overview of property groups and optionsLogon instances

have the following property groups:

 Basic settings

 Advanced settings

 View permissions and restrictions (*)

 In use by (*)

 Previous versions (*)

The property groups marked with (*) are described in section 3 “Generic application
properties”.

The available options are the standard options (Save, Save as draft, Copy, Cancel, Show all
and Hide all). These are described in section 2.5 “Options on the application instance details
page”.

9.3 Basic settings

The basic settings of Logon instances are:

Define the basic settings as follows:

Tree storage: The tree storage allows you to organize your content in a hierarchic folder
structure. You can define a maximum of five levels in the storage tree.

In use: You can set an application instance to Not in use. This implies that you cannot link the
application to pages. Setting an application instance to Not in use does NOT imply that it is
removed from views (pages).

Title (English): This is the title that is displayed in the header of the Logon widget.

Keywords (English): You can define keywords (tags) that are relevant for this application.
These keywords will be inserted into the HTML page as meta tag keywords, which can
improve your ranking in search engines (SEO).

Notes (English): You can add notes to the application instance. These notes are for internal
use only; they are not displayed in the actual application.

Text before login fields (English): This text will be displayed before the actual logon fields.
You can use HTML tags in the text.

Text after login fields (English): This text will be displayed after the actual logon fields. You
can use HTML tags in the text.

9.4 Advanced settings

The advanced settings of Logon instances are:

Created by: This is the person who created the Logon instance and the date on which it was
created. You cannot modify these properties.

Modified by: This is the person who last edited the Logon instance and the date on which it
was modified. You cannot modify these properties.

Unique id: This unique id of the Logon instance is used for internal purposes only. You
cannot modify it.

10 Submenu

Select the option „Content - applications‟ from the left navigation pane and then the option
Submenu, the list of existing definitions will be displayed.

10.1 What is a Submenu?

The submenu application is a widget that can be added on a page.

The widget will show the contents of the submenu (in the main navigation) where the active
page is at.

If the page occurs at two different points in the menu (say) then the contents of the first
submenu where the page is at will be displayed (the application cannot detect where the user
clicked).

When creating a submenu, the number of levels can be specified. This denotes the number of
levels in the (main menu) submenu that it will display in its own list.

If the page does not occur in a submenu the widget will hide itself.

10.2 Overview of property groups and optionsSubmenu

instances have the following property groups:

 Basic settings

 View permissions and restrictions (*)

 In use by (*)

 Previous versions (*)

The property groups marked with (*) are described in section 3 “Generic application
properties”.

The available options are the standard options (Save, Save as draft, Copy, Cancel, Show all
and Hide all). These are described in section 2.5 “Options on the application instance details
page”.

10.3 Basic settings

The basic settings of Submenu instances are:

Define the basic settings as follows:

Tree storage: The tree storage allows you to organize your content in a hierarchic folder
structure. You can define a maximum of five levels in the storage tree.

In use: You can set an application instance to Not in use. This implies that you cannot link the
application to pages. Setting an application instance to Not in use does NOT imply that it is
removed from views (pages).

Title (English): This is the title that is displayed in the header of the Submenu widget.

Keywords (English): You can define keywords (tags) that are relevant for this application.
These keywords will be inserted into the HTML page as meta tag keywords, which can
improve your ranking in search engines (SEO).

Notes (English): You can add notes to the application instance. These notes are for internal
use only; they are not displayed in the actual application.

10.4 Example

Say you want a submenu for locations, that is displayed on all pages.

Steps:

 You should already have the locations in a submenu of the main navigation.

 Then add a (the same) submenu widget to all the location pages.

 The same submenu widget will be placed on all pages.

Behaviour:

 When the page is loaded the widget checks if the page has a link in the main
navigation.

 If so if will display the links from that submenu.

 If not it will simply hide itself.

 If the page is in multiple submenu‟s it will show the data from the first available
submenu.

11 Selfcheck loans/returns

Select the option „Content - applications‟ from the left navigation pane and then the option
Selfcheck loans/returns, the list of existing definitions will be displayed.

11.1 Introduction

It is possible to loan items via the Iguana front-end. There are two possible workflows:

Workflow 1 (user is logged on):

a. A user goes to his My Profile page.
b. There he/she has the option “Loan items”.
c. When activated, he/she can scan or type one or more items. After he has scanned

the item or typed the item, the user will see the title and due date. [When
unsuccessful, a clear error message is displayed.]

d. The items will be on loan to the user after he/she has scanned the item (i.e. not only
when the form is submitted), i.e. there is a “commit” after each item.

Workflow 2 (anonymous):

a. A widget can be placed anywhere in the site.
b. The user can scan his library card (or type his library card number). After he has

scanned the card, the name of the user will appear.
c. From here on the workflow is identical to the one mentioned above (steps c. and d.).
d. The widget will contain a very clear message “Click here after you have checked out

all the items”. Clicking on this the user name will be “erased”. If the user does not
click the button the widget will “erase” the user name (i.e. erase the user from the
session) after a time-out of n minutes (the value of n is a parameter; if not defined,
the default time-out is 3‟).

In addition it is possible to allow the user to return items.

Workflow:

a. A widget can be placed anywhere in the site.
b. The user enters the barcode(s) of the item(s) to be returned.
c. The items that are returned are listed with Title (ItemBarcode) as part of the footer.

The layout for a self-service widget for Return is defined in the template
SelfCheckLoans.returnform and it can be customized.

11.2 Overview of property groups and optionsSelfcheck

instances have the following property groups:

 Basic settings

 Advanced settings

 View permissions and restrictions (*)

 In use by (*)

 Previous versions (*)

The property groups marked with (*) are described in section 3 “Generic application
properties”.

The available options are the standard options (Save, Save as draft, Copy, Cancel, Show all
and Hide all). These are described in section 2.5 “Options on the application instance details
page”.

11.3 Basic settings

The basic settings of Selfcheck instances are:

Define the basic settings as follows:

Tree storage: The tree storage allows you to organize your content in a hierarchic folder
structure. You can define a maximum of five levels in the storage tree.

In use: You can set an application instance to Not in use. This implies that you cannot link the
application to pages. Setting an application instance to Not in use does NOT imply that it is
removed from views (pages).

Title (English): This is the title that is displayed in the header of the Selfcheck Loans or
Returns widget.

Keywords (English): You can define keywords (tags) that are relevant for this application.
These keywords will be inserted into the HTML page as meta tag keywords, which can
improve your ranking in search engines (SEO).

Notes (English): You can add notes to the application instance. These notes are for internal
use only; they are not displayed in the actual application.

Type: Select either Loan or Return from the dropdown list.

Text before self check fields (English): This text will be displayed before the actual self-
service fields. You can use HTML tags in the text.

Text after self check fields (English): This text will be displayed after the actual self-service
fields. You can use HTML tags in the text.

Time-out (in minutes): The number of minutes after which a self-service sessions will be
terminated (when the user himself does not terminate the session by clicking on the relevant
link for this).

11.4 Advanced settingsThe advanced settings of Selfcheck are:

Created by: This is the person who created the selfcheck loans instance and the date on
which it was created. You cannot modify these properties.

Modified by: This is the person who last edited the selfcheck loans instance and the date on
which it was modified. You cannot modify these properties.

Unique id: This unique id of the selfcheck loans is used for internal purposes only. You
cannot modify it.

12 iFrames

12.1 Iguana and iFrames

An iFrame is an HTML tag that allows you to include another HTML document in a frame.
This allows you to open a web page inside another web page.

Iguana‟s front-end framework supports the iFrame technique to include documents (widgets)
that are non-native to Iguana. Please note that this is not the only technique used by Iguana
to include such content (other supported techniques include content that is placed in
<DIV>‟s).

Although the technique is very powerful and allows you to include basically any content from
any website into the Iguana front-end, you should note the following:

You should think of an <iframe> as basically another browser window (another
browser session), which means that communication with the <iframe> is much more
difficult than with other widget containers. In principle, you should assume that
communication with the content and functionality of the <iframe> is not possible.

There is a risk that you include content which is visually different from the overall look
and feel of your site. Although it is technically possible to include literally any site /

widget / HTML document in an <iframe>, most sites will not be able to resize / format
to the desired width of the <iframe> widget container in Iguana. Furthermore, it may
not be possible to apply a theme (CSS) to the content of the HTML that you want to
include.

Below we include two examples of successful iFrame integrations (Google Maps and Twitter
tweets). Both are successful because both these are designed as widgets that can be styled
(up to a certain level) by the „host‟ environment (in this case two Iguana sites).

iFrame examples:

The Google Maps widget at the right of the page is integrated via the iFrame technique.

The Twitter tweets widget (“Follow us on twitter”) at the right of the page is included via the
iFrame technique.

In the CMS, iFrames are defined as Rich Text Items, i.e. via the Rich Text Editor.

12.2 Integrating iFrames in IguanaTo integrate an iFrame in the

Iguana framework, act as follows.

1. On the Iguana home page, select the “Rich Text Items” option under Content –
applications from the navigation menu. This will display all existing Rich Text Items
(RTI‟s).

2. If you want to edit an existing iFrame, select it from the list. If you are going to add a
new iFrame application, click the New button.

3. The RTI details will be displayed. To define or edit the iFrame details, open the Rich
Text Editor in the Content section.

4. Click on the iFrame button in the button bar of the Rich Text Editor ().

5. This will open a popup form that allows you define the iFrame properties.

See the next section for a description of fields that you need to define to insert an
iFrame. Please note that in most cases you only need to define a few of the properties
that are displayed in the popup form.

6. Click on OK and then save the changes by clicking on the Save (or Save as draft)
button on the RTI‟s details page.

Alternatively, you can define the iFrame code by using the Code button:

1. Follow the first three steps of the previous workflow.

2. Click on the (HTML) Code button in the button bar of the Rich Text Editor ().

3. Enter the HTML code of the iFrame in the editor. See the next section for a description
of the syntax and a few examples.

4. Save the changes by clicking on the Save (or Save As Draft) button on the RTI‟s
details page.

12.3 iFrames syntax and examples

The generic code to integrate an iFrame is:

<iframe width="95%" height="400" frameborder="no"

src="{URL}"></iframe>

Define the iFrame properties as follows:

HTML
attribute

Explanation and comments Input form field

(see previous
screen shot)

width The width of the iFrame. You should define the width
as a relative value and not as an absolute value.
Setting the value of width to 100% implies that it will fill
as much space as is available within the widget
container. The actual width of the widget is defined in
the template and/or CSS; this is why the value of the
iFrame itself should be relative: that way it will nicely fit
in with the width of the widget container.

In some cases you may want to set the value of the
width property to a value that is slightly smaller than
100% (see the Google Maps example below),
because it may result in a cleaner display. Setting the
width to e.g. 95% can result in very small borders
being shown in the widget container, resulting in a
nicer display.

Width

height The height of the iFrame. Because Iguana does not
know what the content of the iFrame will be, there are
no clear rules as to what the value of the height
property should be. So in practice it will require a „trial
and error‟ approach to come up with the best possible
value. In almost all cases you will want to avoid that
the iFrame is shown with a scroll bar.

Height

frameborder Typically, this value will be set to “no”, - which implies
that the iFrame has no border. The iFrame is
displayed in the Iguana front-end inside a widget
container, which may have its own border (which is
defined at CSS level). For this reason, the iFrame
itself will almost always have a value of “no” for the
frameborder property.

Show frame border

Src Any valid URL; its syntax will depend on the individual
case (see below for a few examples)

URL

Examples of iFrame integration are:

 Google Maps: <iframe width="95%" height="400" frameborder="0"
src="www.map.display.cls"></iframe>

 Twitter feeds: <iframe width="100%" height="380" frameborder="0"
src="/iguana/php/twitter.php?twitter=BiebBreda"></iframe>

See the chapter on Practical examples in the document on Mashups for detailed configuration
information of Google Maps and Twitter feeds

Please note

An iFrame can have other properties than the ones that are included in this table.
However, in most cases the abovementioned properties will be sufficient to include the
iFrame in a correct way.

13 Forms (Webforms)

Please note

This section of the documentation assumes that the reader is familiar with Iguana, the
CMS behind Iguana and the Rich Text Editor used with Iguana.

This section is relatively very technical and creating forms is not always trivial.
Experience with programming and programming logic is not required, but will help in
understanding several concepts and implementation aspects.

Therefore, most readers will want to skip this section.

13.1 Iguana and Forms (Webforms)

A form (or webform) is a part of a web page that allows the user to enter data. This data is
then sent to the server for further processing. Forms consist of one or more check boxes, text
fields or radio buttons. The user fills in the fields in the form and submits them. The content is
then sent to the server, where the input is tested.

The forms that are supported by Iguana can lead to two different actions:

DocHelp%5eIguana%5e11_Mashups%5eeng.htm

1. The input is used to populate an email that (on submit of the form) is sent off to a
predefined email address

2. The input is used to create a URL that (on submit of the form) is launched in a separate
browser window

This section of the documentation describes how you can create forms. Forms are created
using the Rich Text Editor. Typically forms are part of a Rich Text Item instance in an existing
Iguana application. This section mainly describes the specific naming conventions that are
used for assigning functionality to the form, and several remarks and caveats are included. It
also explains how to take care of accessibility. There will also be a brief description of the
internal logic behind the form and its handlers.

13.2 Explanation of logic

This section explains the basic logic behind the forms, - and how elements describe
functionality and thus can affect the logic. More in-depth explanation for each of these
elements and functionalities is available with the descriptions of each element below.

Technically, forms in Iguana are supported by a combination of HTML, JavaScript and server-
side code.

When a form is submitted, a JavaScript function is run. This script submits the form, rather
than using a direct (“normal”) form submit. The script loops over all form elements within the
form and checks their respective names. Based on the name it decides what to do with the
value of the form element and how to store it for submitting.

There is a special (hidden) element called „formaction‟. The value of this element describes
what the form should do. At the moment two values are supported.

When it is „openurl‟, it means the form details should be sent to a URL that is also defined in
the form, - with the form specified parameters appended as URL parameters.

When it is „sendmail‟ (or any other value at the moment), the general form handler on the
server is called for sending it to the server. These details are stored inside an object. This
object is then sent to the server. From there on the server determines what to do. It will
typically send the supplied data to the generic form handler (this is the only option at this
moment). This will once again go through the data and determine what to do. If it recognizes
the identifier for a specific piece of data it will deal with it accordingly, - otherwise it is treated
as part of the data that needs to be stored/sent/etc, basically data that the user has entered
before submitting the form. The email will be sent using details specified in the Iguana
preferences. The body of the email message can be altered from the System texts module in
the CMS, under the „SMTP‟ module, in the „mailmessage‟ text. In this text, the „${details}‟
token is used to dynamically insert the details that were entered in the form.

Editor settings related to forms

It is possible to use a general site-wide setting to make sure created form elements do
or do not use dojo, the JavaScript framework that is used by Iguana in its front-end
framework. This setting can be changed by Infor if needed. Under normal circumstances
this is not necessary. The setting has an effect on the DOM structure of the HTML
document.

Please note that changes to this setting are not backwards compatible and never have
an effect on existing forms, - not even if they are saved again.

13.3 Creation of a form

This section describes how to create a form and how to assign functionality to (parts of) the
form.

The scripts that are used when submitting a form depend on the values that have been
assigned to the „name‟ attribute of the various elements within the form. This section
describes the various types of functionalities / form elements and how they can be assigned
using their respective naming convention.

Whenever „XXX‟ is used in the following sections, it is assumed this will be replaced by the
appropriate name selected by the creator of the form.

To create a form, use the button. The name that is given to the form should be of the
form form_XXX. This will generate the following code:

<form name="form_XXX" method="get" onsubmit="return

handleForm(this);">

</form>

13.4 Hidden form elements

This section describes the various hidden form elements. These elements are used to
describe the logic and functionality of the form. All of these elements can be made using the

 button. The generated code will look like this:

<input type="hidden" name="XXX" value="value_of_XXX" />

or

<input type="hidden" name="hidden_XXX" value="value_of_XXX" />

formaction

Element name: formaction

Possible values: openurl | sendmail

This element describes the type of the form. At the moment only two types are supported,
openurl and sendmail.

urlToOpen

Element name: urlToOpen

Required: When formaction is set to openurl

Possible value: A valid URL

This element describes the URL that will be opened after submitting the form. Values from
other fields in the form can be inserted into this URL using the [[XXX]] notation. So for
instance if there is an input field called searchTerm that the user can edit, the value that the
user has entered can be inserted into the URL using the [[searchTerm]] string inside the URL.

target

Element name: target

Required: When formaction is set to openurl

Possible value: A valid target, such as _new or _self

This element describes the target that will be used when calling urlToOpen.

See e.g. http://www.w3schools.com/tags/att_a_target.asp for possible values of the target
attribute.

mandatory

Element name: mandatory

http://www.w3schools.com/tags/att_a_target.asp

Possible value: comma-separated list of mandatory fields

This element describes the mandatory fields of the form, that is, the visible / user editable
elements of the form that need to be filled in / have a value before the form can be submitted.
For each mandatory field it holds the name of that field minus the type of the field, separated
by a comma. For instance if the field input_name is mandatory (this would be an input field)
name would have to be present inside mandatory‟s value.

In Iguana version 2 there is no possibility to perform additional checks on fields. The
„mandatory‟ fields check merely ensures that all fields listed are non-empty when
submitting a form. So there are no facilities to test for validity of an entered email
address or other such validity tests.

replaceselect

Element name: replaceselect

Possible value: comma-separated list of options and replacing values.

This element is used when one or more dropdown boxes in the form (select element) need to
have a value sent that might be different from the displayed name for a selected option. For
instance, if there‟s a dropdown box and one of its options has a name „Library Breda‟ and this
is the option chosen by the user, the text „Library Breda‟ will be used as the value for the
dropdown box. However, if the value should be its branch code, say „BB‟, this can be set
inside replaceselect as follows: „Library Breda^BB‟. The character „|‟ is used as a delimiter for
separate elements, if another replace is set as „Library Roosendaal^BR‟, replaceselect will
look like: „Library Breda^BB|Library Roosendaal^BR‟.

This construction is necessary because of the usage of the dojo „FilteringSelect‟ widget
which replaces the HTML select.

order

Element name: hidden_order

Possible value: comma-separated list of all fields that (possibly) contain data for the form

This element is used when the order in which the visible / user editable fields as it appears in
the email needs to be customized, i.e. be different from the default alphabetical order (if you
do not use this field, the fields will be processed in alphabetical order).

For each field it holds the name of that field minus the type of the field, separated by a
comma. For instance, if the field input_name is mandatory (this would be an input field) name
would have to be present inside mandatory‟s value.

This property is only relevant for emails (formaction is sendmail).

The property is not used when formaction is set to openurl.

Please be aware of the fact that all fields must be included in the order list. If you omit
any fields from the order list, those fields will not be processed.

success

Element name: success

Possible value: string

After the form has been submitted successfully the value of the success field, if set, is
displayed to indicate that the form has indeed been submitted successfully. How this
message is displayed, depends on the existence of a <div> with the id attribute
message_XXX where XXX is the name of the form (or the last part of the name if name holds
an underscore _).

failure

Element name: failure

Possible value: string

After the form has been submitted unsuccessfully the value of the failure field, if set, is
displayed to indicate that the form has indeed been submitted unsuccessfully. How this
message is displayed, depends on the existence of a div with the id attribute message_XXX
where XXX is the name of the form (or the last part of the name if name holds an underscore
_).

to

Element name: hidden_to

Possible value: email address(es)

This value holds a list of email addresses. When formaction is set to sendmail, this value will
be used for the resulting email‟s to field. Multiple email addresses can be separated using
either a comma („,‟) or a semi-colon („;‟); mixing these can however lead to unexpected
results. Not used when formaction is set to openurl.

recipient

Element name: hidden_recipient

Possible value: email address(es)

See to.

cc (not implemented)

Element name: hidden_cc

Possible value: email address(es)

This value holds a list of email addresses. When formaction is set to sendmail, this value will
be used for the resulting email‟s cc field. Multiple email addresses can be separated using
either a comma („,‟) or a semi-colon („;‟); mixing these can however lead to unexpected
results. All entered email addresses need to be (syntactically) valid. Not used when
formaction is set to openurl.

Please note

The cc element is not implemented, but we include it for completeness‟ sake.

bcc (not implemented)

Element name: hidden_bcc

Possible value: email address(es)

This value holds a list of email addresses. When formaction is set to sendmail, this value will
be used for the resulting email‟s bcc field. Multiple email addresses can be separated using
either a comma („,‟) or a semi-colon („;‟); mixing these can however lead to unexpected

results. All entered email addresses need to be (syntactically) valid. Not used when
formaction is set to openurl.

Please note

The bcc element is not implemented, but we include it for completeness‟ sake.

from

Element name: hidden_from

Possible value: email address(es)

When formaction is set to sendmail, this value will be used for the resulting email‟s from field.
This needs to be a (syntactically) valid email address. Not used when formaction is set to
openurl.

subject

Element name: hidden_subject

Possible value: string

When formaction is set to sendmail, this value will be used for the resulting email‟s subject
line. Not used when formaction is set to openurl.

replace

Element name: hidden_replace

Possible value: string

This element is used to replace the name of an element (and thus the name that will be used
in the resulting email) by the assigned value of this element. For instance, if a checkbox has
been created in the form called checkbox_newsletter, normally, if the checkbox has been
checked, it would appear in a submitted form email as „newsletter: on‟. By adding a hidden
form element with name replace_newsletter and value „Subscribe to newsletter: „, it would
appear in a submitted form email as „Subscribe to newsletter: on‟.

If a checkbox is not checked, the form will not submit it (this is expected browser
behaviour, not a feature of Iguana). In that case, neither the checkbox‟s name nor the
value of replace will be used.

XXX

Element name: hidden_XXX

Possible value: any string

Any hidden form elements not in the preceding list will be added to the data object with the
user-entered data, the name XXX will be used as its name. This can be used to add specific
data to this object.

13.5 User editable form elements

This section describes the various visual form elements that the end-user can see (and in
most cases, also edit), how they are named and how their name affects the form when it is
submitted.

General remarks

The name that should be given to all of the form elements described in this section are of the
form type_XXX. Here type describes the type of the form element and XXX the custom name
of the element. XXX will be used as an identifier for the data that gets submitted.

The name XXX should use only alphanumeric characters. Spaces, underscores, etc, should
not be used. Using these can result in unexpected / unwanted behaviour or can even break a
form.

For all the form elements, except where noted, the name XXX and the value of the form
element will be used for submitting. This means that when formaction is openurl, the resulting
url will contain a name/value pair XXX=value, and if the formaction is sendmail, the resulting
email will contain a line XXX: value.

Single line input field

A single line input field can be created using the button. The name should be
„input_XXX‟.

The resulting code will look like this:

<input type="text" name="input_XXX" dojotype="dijit.form.TextBox" />

Multiple line textfield

A multiple line text field, also known as a textarea, can be created using the button. The
name should be „input_XXX‟.

The resulting code will look like this:

<textarea name="input_XXX"

dojotype="dijit.form.SimpleTextarea"></textarea>

Because of the way the Rich Text Editor works, using a textarea itself to display the
content, this form element breaks the HTML when it is loaded into the Rich Text Editor,
and content that is placed beneath this element will get lost. Use this element with care!

Checkbox

A checkbox can be created using the button. The name should be „checkbox_XXX‟.

The resulting code will look like this:

<input type="checkbox" name="checkbox_XXX" value="value"

dojotype="dijit.form.CheckBox" />

Radio

A radio button can be created using the button. The name should be „radio_XXX‟. When
using this element, it is recommended to have at least two radio buttons with the same name
(this will be used as a group where only one of these options can be selected, think of
something like gender).

The resulting code will look like this:

<input type="radio" name="radio_XXX" value="male" checked="checked"

dojotype="dijit.form.RadioButton" />

In this case the resulting radio-button will be pre-selected (checked=”checked”).

Button

A button can be created using the button, or the button if an image-button needs to
be used. If the button is used to submit a form, the option „submit the form‟ has to be selected
or set.

The resulting code will look like this:

<button name="name" type="submit"

dojotype="dijit.form.Button">send</button>

Select

A dropdown list can be created using the button. The name should be „select_XXX‟. All
the available options need to be specified. Make sure both the Text and Value fields for each
option are the same. If a value needs to be different from the displayed text for an option, use
the „replaceselect‟ hidden field. If a value needs to be an empty string when its option is
selected (for instance when the first option inside a dropdown is used to state what can be
selected, for instance „select a country‟), the Value needs to be set to „make_empty‟. The
resulting code will look like this (with two options defined):

<select dojotype="dijit.form.FilteringSelect" id="select_XXX"

name="select_XXX">

<option value="option 1">option 1</option>

<option value="option 2">option 2</option>

</select>

Please note

You should not allow for selection of multiple options, as this will not give the desired
result.

13.6 Accessibility

All form elements that are visible to the user, such as input fields, checkboxes, etc, need to
have a label assigned to them in order to be considered „accessible‟. CKeditor does not

support automatic insertion of a label element (caveat: see note #2 below), so this has to be

done using the button to insert HTML code directly into the form. The code for a
label looks like this:

<label for=”XXX”>value</label>

The value XXX of the „for‟ attribute for the label needs to be identical to the „id‟ attribute of the
form-element it will be a label for. Also, the „id‟ attribute, and therefore the „for‟ attribute, needs
to be unique. If an „id‟/‟for‟ is used, the „name‟ attribute of the form element should preferably
be named the same.

At this moment there is no option to distinguish between adding empty labels
automatically when inserting form elements or adding them manually.

As noted, CKeditor does not automatically create a label for each created form
element. You will have to add these manually. Please note also that the opposite is
also true: removing a form-element will likely not result in the removal of the
corresponding label. At the moment neither of these options is available.

13.7 Examples

13.7.1 Full example : generating an email

In this example a form will be created which will generate an email which contains the details
entered in the form. This example will show the various stages of the process, whereas the
following examples will be more concise and show only the specific and relevant steps for that
particular type of form.

First, the form needs to be defined. Using the (Form) button, enter the details in the
dialog:

After entering the details and clicking the „OK‟ button, a red dotted outline will appear in
CKeditor. All the following form elements need to be defined within this outline, as well as the
visual layout of the form elements.

Once that has been defined, the hidden fields can be defined which provide functionality to

the form. First, the form has to be told that it needs to send an email. Using the (Hidden)
button, enter the following details into the dialog:

To add the subject line for the email that will be sent, add another hidden field with the name
„subject‟:

This form will have two fields, „name‟ and „email‟, and both need to have a value before the
form can be entered. To accomplish this, the „mandatory‟ hidden field needs to be used, as
follows:

To enter the „name‟ input field, use the button and enter the details:

And another input field for „email‟ similar to the above one.

Also a submit button is needed, for which the button is used. Enter as follows:

Please note that Type is set to „Submit‟. The value of „Text (Value)‟ will be used as the text to
display on the button.

Once this has been created, the resulting form inside CKeditor could look like this, depending
on what visual layout has been created:

And when viewed inside Iguana (using the „orange‟ theme):

Due to the fact that the „mandatory‟ hidden field is set, a warning will be displayed when one
or both of the input fields are not filled in:

Otherwise the form will be submitted and an email with the entered subject line will be sent.

13.7.2 Full example : launching a URL

In this example a form will be created which will launch a URL. The form will contain one input
field in which a search term can be entered. After submitting the form, Google will be opened
showing the search results for the entered search term.

First the correct form action needs to be set up, with the „openurl‟ value:

This way the form knows that it needs to launch a URL. Now the URL needs to be defined,
using a hidden field, as follows:

Note that this URL contains a piece of text „[[searchTerm]]‟. This part of the URL will be
replaced by the value of the input field „searchTerm‟, so this input field needs to be created as
well:

A submit button also needs to be defined, as described in the first example. Once everything
has been set up including the layout, the form could look like this inside CKeditor:

And when viewed inside Iguana (using the „orange‟ theme):

When the text „Iguana‟ is entered into the input field and the „Search‟ button is pressed, the
URL „https://www.google.com/search?q=Iguana‟ will be opened in a new browser tab.

13.7.3 A more complex example : the photo competition

More complex functionalities are also possible. A good example is a photo competition form
which was created for the Bibliotheek Breda site:
http://www.bibliotheekbreda.nl/iguana/www.main.cls?surl=fotowedstrijd. Library customers
could win a prize in an online competition: they could select, for each photo in a set of twelve,
from a list of possible titles (“select the correct title for each photo”). After making their
selections, they could email their submission to the library.

Please note that this site, and the form, was created in Dutch. The page showed a form with a
grid of images and a dropdown box below each image, from which a title for each image
could be selected. Finally it also had a more conventional set of input fields below the grid to
enter details and submit everything. A resized screenshot can be seen below (including an
opened dropdown):

http://www.bibliotheekbreda.nl/iguana/www.main.cls?surl=fotowedstrijd

To give an idea of how this layout was accomplished, here is a section of how it appears
inside CKeditor:

As can be seen by the light-grey lines, a table was used to place the images and the
dropdowns in a grid. For each image a dropdown was created which differed in only 1 aspect,
the name that was given to it. Each dropdown had a unique name, select_foto1, select_foto2,
select_foto3, etc. These were set up as follows, with a different „Name‟ for each, but with the
same options:

All of the dropdowns were mandatory, as well as a number of the regular input fields. The
„mandatory‟ hidden field was used for this:

There was also a requirement to list the submitted data in a particular order inside the email.
This can be accomplished using the „order‟ hidden field, as follows:

Please note that at this point all of the possible fields needs to present in the Value of the
„order‟ hidden field, as explained in the paragraph on „order‟.

The form also displays a custom message when it has been submitted successfully. This was
accomplished using the „success‟ hidden field:

 Document control - Change History

Version Date Change description Author

1.0 August 2011 Creation

1.1 September 2011 Added sections on iFrames and

Forms (included document from

EdwinH for the latter topic)

1.2 December 2011 Partly rewrote the introduction ;

Removed the section on Search

Boxes (obsolete) ; Moved the section

on Direct search to the chapter on

Search

1.3 December 2011 Removed the chapter “Search

(complete)”

1.4 December 2011 Processed comments from

EdwinVDG

1.5 December 2011 Added section on WebForms

examples

Edwin Heijmen

1.6 January 2012 Filled in multiple outstanding (minor)

topics, e.g. screen shot examples for

animation types ; added information

on Iguana specific Rich Text Editor

features

1.7 January 2012 Added header

1.8 January 2012 Reviewed

1.9 January 2012 Reviewed

1.10 January 2012 Layout changes in context of

automated link generation

2.0 May 2012 Reformat for online help doc

3.0 November 2012 Added screen shots, guidelines, more

explanations; reformatted

part of 3.0 updates

3.1 April 2014 Note on animations from savelists;

subtitles for RTI’s

part of 3.0 updates

3.2 August 2014 Selfcheck widget now for loans &

returns; more on animations,

submenus

part of 3.0 updates

4.0 April 2016 Scope on home institution for

animations; new version of CKeditor

part of 4.0 updates

